ASTR 2310: Chapter 2

- Emergence of Modern Astronomy
- Early Greek Astronomy
- Ptolemaic Astronomy
- Copernican Astronomy
- Galileo: The First Modern Scientist
- Kepler's Laws of Planetary Motion
- Proof of the Earth's Motion

ASTR 2310: Chapter 2

- Early Greek Astronomy
- Smart, but limited experimentation
- Limited tools (e.g. no telescopes)
- Our knowledge is fragmentary
- Still lots of stuff right way back then
- E.g., Lunar phases and eclipses
- more as well

ASTR 2310: Chapter 2

- Aristotle's Explanations for Spherical Earth
- Gravity pulls everything together, strongly, and a sphere is the most compact form
- Partial lunar eclipses always show an arc of a circle and only spheres ALWAYS show such shadows from any angle
- Different stars visible as you move south, suggesting a curved Earth.
- African and Indian elephants similar and on "opposite sides of the world" so they must be close to each other...well, not quite!

ASTR 2310: Chapter 2

- Aristarchus: Relative Distances to Sun and Moon
- Wikipedia: http://en.wikipedia.org/wiki/ Aristarchus_On_the_Sizes_and_Distances

Sun

ASTR 2310: Chapter 2

- Aristarchus: Relative Distances to Sun and Moon

- If theta $=89.853$ degrees (modern value) then $\mathrm{C}=390 \mathrm{~A}$

ASTR 2310: Chapter 2

- Aristarchus: Relative Sizes of Moon, Earth, Sun
- Geometry involving eclipses
- Wiki:
http://en.wikipedia.org/wiki/
Aristarchus On the Sizes and Distances\#Lunar eclipse
- Came up with 1:3:19 (modern values 1:4:390) for ratios of diameters.

ASTR 2310: Chapter 2

- Eratosthenes: Size of the Earth
- Geometry involving the sun
- Wiki: http://en.wikipedia.org/wiki/Eratosthenes
- Figured out what fraction $(1 / 50)$ of the Earth's circumference corresponded to the distance between Alexandria and Syene
- Figure from Wired Magazine
- Theta is about 7 degrees
- Answer is the circumference is $46,000 \mathrm{~km}$
- Modern value closer to $40,000 \mathrm{~km}$

ASTR 2310: Chapter 2

- Hipparchus: Extraordinary Observer
- Star Catalog
- Led to detection of precession of equinoxes
- Magnitude system (ASTR 2320 horror show!)
- Accurate distance to the Moon
(not too far off the modern value of 60.5 Earth radii)
- Length of tropical year (good to 7 minutes)

ASTR 2310: Chapter 2

- Emergence of Modern Astronomy
- Early Greek Astronomy
- Ptolemaic Astronomy
- Copernican Astronomy
- Galileo: The First Modern Scientist
- Kepler's Laws of Planetary Motion
- Proof of the Earth's Motion

ASTR 2310: Chapter 2

- Ptolemaic Astronomy
- Ptolemy developed detailed mathematical model to predict positions of objects in the sky
- Used for 14 centuries
- Accurate but conceptually flawed

ASTR 2310: Chapter 2

- Ptolemaic Astronomy
- Observed elements:
- Stars, with fixed relative positions, rotate around celestial pole
- Sun moves east along ecliptic, tilted at 23.5 degrees, about 1 degree per day
- Moon moves east also, not quite on ecliptic, about 13 degrees per day
- Planets usually move eastward (prograde), but sometimes west (retrograde). And only some planets.

ASTR 2310: Chapter 2

- Ptolemaic Astronomy
- Earth doesn't move (no sense of motion, parallax)
- Not quite at center
- Everything "circles"
- Lots of weird terms
- Predicts positions ok!

ASTR 2310: Chapter 2

- Ptolemaic Astronomy
- Not all planets equal!
- Placements look odd
- Tested by Galileo

ASTR 2310: Chapter 2

- Copernican Astronomy
- Sun at center -- heliocentric
- Still circles
- Simpler
- Not more predictive

ASTR 2310: Chapter 2

- Copernican Astronomy
- Explanation for retrograde motion

ASTR 2310: Chapter 2

- Copernican Astronomy
- Inferior Planets
- no retrograde motion
- always close to the sun
- orbits smaller than Earth's
- Venus, Mercury
- Superior Planets
- (Mars, Jupiter, Saturn known by Greeks)
- Retrograde motion, orbits larger than Earth's

ASTR 2310: Chapter 2

- Copernican Astronomy
- More Terminology - draw Figure on board
- Opposition
- Conjunction
- Quadratures
- Elongation (angle between planet and sun)
- Synodic period (e.g., time between conjunctions)
- Sidereal period (period relative to background stars)

ASTR 2310: Chapter 2

- Copernican Astronomy - Inferior Planets
- Orbital Periods and Relative Planetary Distances
- Angular Velocities (ω)
- Inferior Planets: $\omega_{P}=\omega_{E}+\omega_{\text {syn }}\left(\omega_{P}>\omega_{E}\right)$
- Inferior Planets: $1 / P_{P}=1 / P_{E}+1 / P_{\text {syn }}$
- Period of Venus: ($1 / 365.256$ days $+1 / 583.92$ days $)^{-1}$
- So we get the orbital period of 224.70 days

ASTR 2310: Chapter 2

- Copernican Astronomy - Superior Planets
- Orbital Periods and Relative Planetary Distances
- Angular Velocities (ω)
- Superior Planets: $\omega_{P}=\omega_{E}-\omega_{\text {syn }}\left(\omega_{P}<\omega_{E}\right)$
- Superior Planets: $1 / P_{P}=1 / P_{E}-1 / P_{\text {syn }}$
- Period of Mars: ($1 / 365.256$ days $-1 / 779.95$ days $)^{-1}$
- So we get the orbital period of 686.98 days

ASTR 2310: Chapter 2

- Copernican Astronomy - Planetary Distances
- Relative to Earth-Sun Distance (Astronomical Unit)
- See nice webpage at:
- http://astro.unl.edu/naap/ssm/ssm_advanced.html

ASTR 2310: Chapter 2

- Copernican Astronomy
- Inferior Planet Orbital Distances (assume circular)
- $\mathrm{D}=1$ Astronomical Unit (1 AU):
- So $d=\sin \theta$ in $A U$

ASTR 2310: Chapter 2

- Copernican Astronomy
- Superior Planet Orbital Distances
- Time t from position 1 to 2
- Angle $\alpha=\mathrm{t}\left(360 / \mathrm{P}_{\mathrm{E}}\right)$
- Angle $\beta=\mathrm{t}\left(360 / \mathrm{P}_{\mathrm{P}}\right)$
- So $d=1 /(\cos (\alpha-\beta))$
- Again in AU

