- Emergence of Modern Astronomy
 - Early Greek Astronomy
 - Ptolemaic Astronomy
 - Copernican Astronomy
 - Galileo: The First Modern Scientist
 - Kepler's Laws of Planetary Motion
 - Proof of the Earth's Motion

- Early Greek Astronomy
 - Smart, but limited experimentation
 - Limited tools (e.g. no telescopes)
 - Our knowledge is fragmentary
 - Still, lots of stuff right, from thousands of years ago
 - E.g., lunar phases and eclipses understood, and more as well

- Aristotle's Explanations for Spherical Earth
 - Gravity pulls everything together, strongly, and a sphere is the most compact form
 - Partial lunar eclipses always show an arc of a circle and only spheres ALWAYS show such shadows from any angle
 - Different stars visible as you move south, suggesting a curved Earth.
 - African and Indian elephants similar and on "opposite sides of the world" so they must be close to each other...well, not quite!

- Aristarchus: Relative Distances to Sun and Moon
 - Wikipedia:

http://en.wikipedia.org/wiki/Aristarchus_On_the_Sizes_and_Distances

- Aristarchus: Relative Distances to Sun and Moon
 - A/C=cosine theta. Theta=87degrees means C=19A
 - If theta =89.853 degrees (modern value) then C=390A

- Aristarchus: Relative Sizes of Moon, Earth, Sun
 - Geometry involving eclipses
 - Wiki: http://en.wikipedia.org/wiki/Aristarchus_On_the_Sizes_and_Distances
 - Came up with 1:3:19 (modern values 1:4:390) for ratios of diameters.

- Eratosthenes: Size of the Earth
 - Geometry involving the sun
 - Wiki: http://en.wikipedia.org/wiki/Eratosthenes
 - Figured out what fraction (1/50) of the Earth's circumference corresponded to the distance between Alexandria and Syene
 - Figure from Wired Magazine
 - Theta is about 7 degrees
 - Answer is the circumference is 46,000 km
 - Modern value closer to 40,000 km

- Hipparchus: Extraordinary Observer
 - Star Catalog (leading to detection of precession of the equinoxes)
 - Magnitude system (ASTR 2320 horror show!)
 - Accurate distance to the Moon (not too far off the modern value of 60.5 Earth radii)
 - Length of tropical year (good to 7 minutes)

- Emergence of Modern Astronomy
 - Early Greek Astronomy
 - Ptolemaic Astronomy
 - Copernican Astronomy
 - Galileo: The First Modern Scientist
 - Kepler's Laws of Planetary Motion
 - Proof of the Earth's Motion

- Ptolemaic Astronomy
 - Ptolemy developed detailed mathematical model to predict positions of objects in the sky
 - Used for 14 centuries
 - Accurate but conceptually flawed

- Ptolemaic Astronomy
 - Observed elements:
 - Stars, with fixed relative positions, rotate around celestial pole
 - Sun moves east along ecliptic, tilted at 23.5 degrees, about 1 degree per day
 - Moon moves east also, not quite on ecliptic, about 13 degrees per day
 - Planets usually move eastward (prograde), but sometimes west (retrograde). And only some planets.

- Ptolemaic Astronomy
 - Earth doesn't move (no sense of motion, parallax)
 - Not quite at center
 - Everything "circles"
 - Lots of weird terms
 - Predicts positions ok!

- Ptolemaic Astronomy
 - Not all planets equal!
 - Placements look odd
 - Tested by Galileo

- Copernican Astronomy
 - Sun at center -- heliocentric
 - Still circles
 - Simpler
 - Not more predictive

- Copernican Astronomy
 - Explanation for retrograde motion

Retrograde Motion in the Copernican Model

- Copernican Astronomy
 - Inferior Planets (no retrograde motion, always close to the sun), orbits smaller than Earth's
 - Venus, Mercury
 - Superior Planets (Mars, Jupiter, Saturn known by Greeks)
 - Retrograde motion, orbits larger than Earth's

- Copernican Astronomy
 - More Terminology draw Figure on board
 - Opposition
 - Conjunction
 - Quadratures
 - Elongation (angle between planet and sun)
 - Synodic period (e.g., time between conjunctions)
 - Sidereal period (period relative to background stars)

- Copernican Astronomy Inferior Planets
 - Orbital Periods and Relative Planetary Distances
 - Angular Velocities (ω)
 - Inferior Planets: $\omega_{P} = \omega_{E} + \omega_{syn} (\omega_{P} > \omega_{E})$
 - Inferior Planets: $1/P_{P} = 1/P_{E} + 1/P_{syn}$
 - Period of Venus: (1/365.256 days + 1/583.92 days)⁻¹
 - So we get the orbital period of 224.70 days

- Copernican Astronomy Superior Planets
 - Orbital Periods and Relative Planetary Distances
 - Angular Velocities (ω)
 - Inferior Planets: $\omega_{P} = \omega_{E} \omega_{syn} (\omega_{P} < \omega_{E})$
 - Inferior Planets: $1/P_{P} = 1/P_{E} 1/P_{syn}$
 - Period of Mars: (1/365.256 days 1/779.95 days)⁻¹
 - So we get the orbital period of 686.98 days

- Copernican Astronomy Planetary Distances
 - Relative to Earth-Sun Distance (Astronomical Unit)
 - See nice webpage at:
 - http://astro.unl.edu/naap/ssm/ssm_advanced.html

- Copernican Astronomy
 - Inferior Planet Orbital Distances (assume circular)
 - D = 1 Astronomical Unit (1 AU):
 - So d = $\cos \theta$ in AU

- Copernican Astronomy
 - Superior Planet Orbital Distances
 - Time t from position 1 to 2
 - Angle α = t (360/P_E)
 - Angle $\beta = t (360/P_p)$
 - So d = $1/(\cos(\alpha \beta))$
 - Again in AU

