ate
(aoct) 1
(a o 12/
sh i

1d forever.
1atter term
row at the
{ far below
ved empty

and its ul-
obligatory
pme say in
the critical
less than or

:an be com-

(6.13)

tegrat

(6.14)-

ien in a para

619

6.1 Matter + Curvature 87

50

40 -7
30 —

20 prae T By=10

0 20 40 60 30 100

2.5

20

15

10F

0.5 -

0 1 1 L 1 1
-0.5 1] 0.5 1.0 1.5 2.0

Hylt — 1)

FIGURE 6.1 The scale factor as a function of time for universes containing only matter,
The dofted line is a(¢) for a universe with. Qg = 1 (flat); the dashed line is a(t) for a
universe with Qp = 0.9 (negatively curved); the solid line is a(z) for a universe with
£ = 1.1 (positively curved). The bottom panel is a blow-up of the small rectangle near
the lower left corner of the upper panel.

Crunch at 8 = 27 is

T Qo
¢, =———— 6.19
A plot of a versus ¢ in the case Qg = 1.1 is shown as the solid line in Figure 6.1.
The a o t%/3 behavior of an Qp = 1 universe is shown as the dotted line. The

solution of equation (6.16) for the case £2p < 1 can be written in parametric form
as

$20

1
a(n) = 27 o (coshn—1) (6.20)
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The first term on the right-hand side of equation (6.23) represents the contribution
of matter, and is always positive. The second term represents the contribution of
a cosmological constant; it is positive if £m,0 < 1, implying Q4 ¢ > 0, and neg-
ative if Qg > 1, implying Q4 o < 0. Thus, a flat universe with Q4 ¢ > 0 will
continue to expand forever if it is expanding at ¢ = #p; this is another example of
a Big Chill universe. In a universe with 4,0 < 0, however, the negative cosmo-
logical constant provides an attractive force, not the repulsive force of a positive
cosmological constant. A flat universe with Q A,0 < 0 will cease to expand at a
maximum scale factor

Qo \12
=|=— ) 6.
Amax ( Qo — 1) (6.24)
and will collapse back down to a = 0 at a cosmic time
2
r ! (6.25)

t =
TN T 3Hy S = 1

For a given value of Hy, the larger the value of §,, o, the shorter the lifetime of
the universe. For a flat, 4,0 < O universe, the Friedmann equation (6.23) can be
integrated to yield the analytic solution

2 - a 3/2

A plot of @ versus ¢ in the case Qmo = 1.1, Qa0 = —0.1 is shown as the solid
line in Figure 6.2. The a o %/3 behavior ofaQpp=10 A,0 = 0 universe is
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FIGURE 6.2 The scale factor as a function of time for flat universes containing both
matter and a cosmological constant. The dotted line is a(t) for a universe with Qpo=1,
Q4,0 = 0. The solid line is a(¢) for a universe with Qmo = 1.1, Q4,0 = —0.1. The
dashed line is a(¢) for 2 universe with Rr,0=09,Qp g =0.1,
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Thus, it is possible to have a universe that expands outward at late ti

$2m,0 and 2, g are chosen just right, is a “loitering™ universe.’ Such a Uiver
starts in a matter-dominated state, expanding outward with a o 12/3, Thep, how-
ever, it enters a stage (called the loitering stage) in which g is very nearly constayt
for a long period of time. During this time it is almost—but not quite—Einstein’s
static universe. After the loitering stage, the cosmological constant takeg over, and
the universe starts to expand exponentially.

Figure 6.3 shows the general behavior of the scale factor a(?) as a function
of £, 0 and A.0. In the region labeled “Big Crunch,” the universe starts with
a =0atr = 0, reaches a maximum scale factor Gmax, then recollapses to g = ¢ at
2 finite time ¢ = £, . Note that Big Crunch universes can be positively curved,

Qo 1 ol
e
0 g
Big Crunch 4
" i
-1 i 1 4 \"'-.: 1 _ 4|

0 0.5 io 1.5 20 25

-Dfm'O

FIGURE 6.3 The curvature and type of expansion for universes containing both matter
and a cosmological constant The dashed line indicates « = 0; models lying above this
line have x = +1, and those lying below have x = —1. Aiso shown ate the regions where
the universe has a “Big Chill” expansion (@ o0ast— o), a “Big Crunch” recollapse

@—>0ast — fcrunch), & loitering phase (a ~ const for an extended period), or a “Big
Bounce” (@ = gpy; = 0 att = fhounce).

Sa loitering universe is sometimes referred to as 2 Lemaitre untverse.
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negatively curved, or flat. In the region labeled “Big Chill,” the universe starts
with g = 0 at ¢ = 0, then expands outward forever, witha — o0 as f — cc.
Like Big Crunch universes, Big Chill universes can have any sign for their curva-
ture. In the region labeled “Big Bounce,” the universe starts in a contracting state,
reaches a minimum scale factor @ = gy, > 0 at some time thounce. then expands
outward forever, with @ — oc as 1 — co. Universes that fall just below the di-
viding line between Big Bounce universes and Big Chill universes are loitering
universes. The closer such a universe lies to the Big Bounce—Big Chill dividing
line in Figure 6.3, the longer its loitering stage lasts.

To illustrate the different types of expansion and contraction possible, Fig-
ure 6.4 shows a(¢) for a set of four model universes. Each of these universes has
the same current density parameter for matter: £, o = 0.3, measured at 1 = #;
and ¢ = 1. These universes cannot be distinguished from each other by mea-
suring their current matter density and Hubble constant. Nevertheless, thanks to
their different values for the cosmological constant, they have very different pasts
and very different futures. The dashed line in Figure 6.4 shows the scale factor
for a universe with 4 ¢ = —0.3; this universe has negative curvature, and is
destined to end in a Big Crunch. The dotted line shows a(z) for a universe with
£2a,0 = 0.7, this universe is spatially flat, and is destined to end in an exponen-
tially expanding Big Chill. The dot-dash line shows the scale factor for a universe
with £24 0 = 1.7134; this is a positively curved loitering universe, which spends

FIGURE 6.4 The scale factor & as a function of ¢ in four different universes, each with
£m,0 = 0.3. The dashed line shows a “Big Crunch” universe (R4 g = —0.3, « = —1),
The dotted line shows a “Big Chill” universe (24,0 = 0.7, ¥ = 0). The dot-dash line
shows a loitering universe (4 o = 1.7134, ¥ = +1). The solid line shows a “Big Bounce”
universe (R, ¢ = 1.8, & = +1).
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TABLE 6.2 Properties of the Benchmark Mode}

List of Ingredients

photons: Q,0=50x10"5
neutrinos: Qy0=345x10"5
total radiation; 2.0=84x 10-5
baryonic matter: 2pary,0 = 0.04
nonbaryonic dark matter: Qam,0 = 0.26
‘total matter: Q.0 =0.30
cosmological constant; 24.070.70
Important Epochs
radiation-matter equality: arm = 2.8 x 10~4 frm = 4.7 x 104 o
matter-lambda equality: amp =0.75 Ima = 9.8 Gyr
Now: ag =1 I =13.5Gyr

& cosmological constant, with Qpo=1- Qm,0 — Q0 ~0.70.

The Benchmark Model was first radiation—dominated, then matter-dominated,
and is now entering into its lambda-dominated phase. As we've seen, radiation
&ave way to matter at a scale factor a,,, = £2,.0/ Qno=28x 10~4, correspond-

time), comprted for the Benchmark Model. The dotted lines indicate the time of radiation-
mmatter equality, arm = 2.8 x 10~4, the time of matter-lambda equality, @ p = 0.75, and
the present moment, ag=1.
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ing to a time #ry = 4.7 x 10* yr. Matter, in tum, gave way to the cosmological
constant at ams = (Qm,0/2a 0)1? = 0.75, corresponding to #,s = 9.8 Gyr.
The current age of the universe, in the Benchmark Model, is 1 = 13.5 Gyr.

With Q. , O, and Q A,0 known, the scale factor a(?) can be computed nu-

transition from the a « #!/2 radiation-dominated phase to the a o £2/3 matter-
dominated phase is not an abrupt one; neither is the later transition from the
matter-dominated phase to the exponentially growing larnbda-dominated phase.
One curious feature of the Benchmark Model illustrated vividly in Figure 6.5 is
that we are living very close to the time of matter-lambda equality.

Once a(t) is known, other properties of the Benchmark Model can be com-
puted readily. For instance, the upper panel of Figure 6.6 shows the current proper
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FIGURE 6.6 The proper distance to a light source with observed redshift z. The upper
panel shows the distance at the time of observation; the lower panel shows the distance at
the time of emission, The bold salid line indicates the Benchmark Model, the dot-dash line
a flat, lambda-only universe, and the dotted line a flat, matter-only universe.
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distance to a galaxy with redshift z. The heavy solid line is the result for t,
Benchmark Model; for purposes of comparison, the result for a ﬂatlambda.onji‘
universe is shown as a dot-dash line and the result for a flat matter-only universe
is shown as the dotted line. In the limit z — oo, the proper distance d (zp) apo )
proaches a limiting value d, — 3.24c/Hy, in the case of the Benchmark Mode] '
Thus, the Benchmark Model has a finite horizon distance,

dhor(t0) = 3.24¢/ Hy = 3.12¢to = 14,000 Mpc. (64

see objects more than 14 gigaparsecs away because light from them has not yet |
had time to reach us. The lower panel of Figure 6.6 shows d(z.), the distance toa |
galaxy with observed redshift 7 at the time the observed photons were emitted. For
the Benchmark Model, d(t.) has a maximum for galaxies with redshift z = 1.6,
where dp(t,) = 0.41c/Hp. :
‘When astronomers observe a distant galaxy, they ask the related, but not iden- |
tical, questions, “How far away is that galaxy?” and “How long has the light
from that galaxy been traveling?” In the Benchmark Model, or any other model,
we can answer the question “How far away is that galaxy?” by computing the
proper distance dy(zp). We can answer the question “How long has the light from
that galaxy been traveling?” by computing the lookback time. ¥ light emitted at
time 7, is observed at time #o, the lookback time is simply g — 7. In the limits
of very small redshifts, {p — . =~ z/Hp. However, as shown in Figure 6.7, at
larger redshifis the relation between lookback time and redshift becomes nonlin-
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FIGURE 6.7 The lockback time, fy — ?., for galaxies with observed redshift z. The
Hubble time is assumed to be H, 1-14 Gyr. The heavy solid line shows the result for the

Benchmark Model, the dot-dash line for a flat, lambda-only universe, and the dotted line
for a flat, matter-only universe.




