

FIGURE 10.4 Mass fraction of nuclei as a function of time during the epoch of nucleosynthesis. A baryon-to-photon ratio of $\eta = 5.1 \times 10^{-10}$ is assumed.

significant amounts of 3 H, 3 He, and 4 He are formed. By the time the temperature has dropped to $T \sim 4 \times 10^8$ K, at $t \sim 10$ min, Big Bang Nucleosynthesis is essentially over. Nearly all the baryons are in the form of free protons or 4 He nuclei. The small residue of free neutrons decays into protons. Small amounts of D, 3 H, and 3 He are left over, a tribute to the incomplete nature of Big Bang Nucleosynthesis. (3 H later decays to 3 He.) Very small amounts of 6 Li, 7 Li, and 7 Be are made. (7 Be is later converted to 7 Li by electron capture: 7 Be $+ e^- \rightarrow ^7$ Li $+ \nu_e$.)

The yields of D, 3 He, 4 He, 6 Li, and 7 Li depend on various physical parameters. Most importantly, they depend on the baryon-to-photon ratio η . A high baryon-to-photon ratio increases the temperature T_{nuc} at which deuterium synthesis occurs, and hence gives an earlier start to Big Bang Nucleosynthesis. Since BBN is a race against the clock as the density and temperature of the universe drop, getting an earlier start means that nucleosynthesis is more efficient at producing 4 He, leaving less D and 3 He as leftovers. A plot of the mass fraction of various elements produced by Big Bang Nucleosynthesis is shown in Figure 10.5. Note that larger values of η produce larger values for Y_p (the 4 He mass fraction) and smaller values for the deuterium density, as explained above. The dependence of the 7 Li density on η is more complicated. Within the range of η plotted in Figure 10.5, the direct production of 7 Li by the fusion of 4 He and 3 H is a decreasing function

FIGURE 10.5 The mass fraction of ⁴He, and the number densities of D, D+³He, and ⁷Li expressed as a fraction of the H number density. The width of each line represents the 95% confidence interval in the density.

of η , while the indirect production of ⁷Li by ⁷Be electron capture is an increasing function of η . The net result is a minimum in the predicted density of ⁷Li at $\eta \approx 3 \times 10^{-10}$.

Broadly speaking, we know immediately that the baryon-to-photon ratio can't be as small as $\eta \sim 10^{-12}$. If it were, BBN would be extremely inefficient, and we would expect only tiny amounts of helium to be produced $(Y_p < 0.01)$. Conversely, we know that the baryon-to-photon ratio can't be as large as $\eta \sim 10^{-7}$. If it were, nucleosynthesis would have taken place very early (before neutrons had a chance to decay), the universe would be essentially deuterium-free, and Y_p would be near its maximum permissible value of $Y_{\rm max} \approx 0.33$. Pinning down the value of η more accurately requires making accurate observations of the *primordial* densities of the light elements; that is, the densities before nucleosynthesis in stars started to alter the chemical composition of the universe. In determining the value of η , it is most useful to determine the primordial abundance of deuterium. This is because the deuterium abundance is strongly dependent on η in the range of interest. Thus, determining the deuterium abundance with only modest accu-