50.02 BIZIOMH IN THE DEPICTED CIRCUIT, SWITCH S HAS BEEN 318.0mH OREAL FOR A LONG TIME FIND THE CHEREAT AT
20-0V 310 OMPI OPEN FOR A LONG TIME. FIND THE CURRENT AT
A COULD POINT A AND THE POTENTIAL DIFFERENCE
BETWEEN POINTS BAND C:
(a) JUST AFTER SWITCH S IS CLOSED (t=0)
(b) AFTER SWITCH S HAS BEEN CLOSED FOR A LONG TIME (+ → ∞, OR "STEADY STATE")
(c) AFTER SWITCH S HAS BEEN CLOSED FOR 0.115 ms
(a) (i) IMMEDIATELY AFTER A SWITCH IS CLOSED, HOW MUCH CURRENT FLOWS IN A
CIRCUIT & (ii) WHEN THIS AMOUNT OF GURRENT FLOWS, DOES AN INDUCTOR LOOK LIKE A
BREAK, A RESISTOR, OR A WIRE (A "SHORT CIRCUIT")? (iii) DRAW THE EQUIVALENT
CIRCUIT WITH THE INDUCTORS REPRESENTED APPROPRIATELY (W) HOW DOES CURRENT
BEHAVE IN THE TYPE OF CIRCUIT YOU'VE DRAWN (SERIES, PARALLEL etc.)? (V) GIVEN YOUR ANSWERS
TO (i) AND (in) WHAT IS in (THE CURRENT AT A)? (in) GIVEN YOUR ANSWERS TO (i) AND (in), WHAT
IS THE DROP IN VOLTAGE ACROSS THE RESISTORS AND WHAT, THEN, IS $\Delta V_{BC} = V_B - V_C ^2$
(b) REPEAT THE STEPS IN (a) FOR i→∞, WHEN i= I, AND CURRENT IS NO LONGER TIME-VARYING
(2)(i) WHEN SOME CURRENT FLOWS IN AN INDUCTOR, DOES IT BEHAVE LIKE A BREAK, A
RESISTOR, OR A WIRE? (") DRAW THE EQUIVALENT CIRCUIT WITH THE RESISTORS REPLACED
BY AN EQUIVALENT RESISTOR AND THE INDUCTORS REPLACED BY AN EQUIVALENT INDUCTOR
(A SIMPLE RL CIRCUICT) (iii) WHAT IS THE EQUATION FOR HOW CURRENT CHANGES WITH
TIME IN AN RL CIRCUIT, SO WHAT IS i, AND WHAT IS in ? (W) GIVEN THE VOLTAGE DROP
AROUND THE CIRCUIT IS $\Delta V = 20V_3$ AND GIVEN THE VOLTAGE DROP ACROSS THE EQUIVALENT RESISTOR, WHAT IS ΔV_{BC} (THE VOLTAGE DROP ACROSS THE INDUCTOR)?